Robust visual tracking based on online learning sparse representation
نویسندگان
چکیده
منابع مشابه
Robust visual tracking based on online learning sparse representation
Handling appearance variations is a very challenging problem for visual tracking. Existing methods usually solve this problem by relying on an effective appearance model with two features: 1) being capable of discriminating the tracked target from its background 2) being robust to the target’s appearance variations during tracking. Instead of integrating the two requirements into the appearance...
متن کاملVisual Tracking Based on Extreme Learning Machine and Sparse Representation
The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly,...
متن کاملRobust object tracking based on sparse representation
In this paper, we propose a novel and robust object tracking algorithm based on sparse representation. Object tracking is formulated as a object recognition problem rather than a traditional search problem. All target candidates are considered as training samples and the target template is represented as a linear combination of all training samples. The combination coefficients are obtained by ...
متن کاملVisual Tracking Based on Reversed Sparse Representation
In this paper, we propose a fast and robust tracking method based on reversed sparse representation. Be different from other sparse representation based visual tracking methods, the target template is sparsely represented by the candidate particles which are gotten by particle filter. In order to improve the robustness of the method, we use a target template set. Meanwhile, a two level competit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2013
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2011.11.031